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Abstract

It is shown that in the rotational superposition method proposed
by Diamond (1988), which always produces orthogonal trans-
formations with positive determinants, a simple test exists for
the existence of an enantiomorphic relationship between the
vector sets, and, if required, an enantiomorphous orthogonal su-
perposition may be provided at no extra cost.

In a recently published paper [(Diamond, 1988), here referred
to as ()] an analysis of the rotational superposition problem
was presented using the quaternion variables, in terms of which
the quadratic residual after rotational fitting was shown to be
a quadratic form of order four. It was also shown that the or-
thogonal transformations so generated necessarily have positive
determinants even if the vector sets to be superposed have op-
posite chirality: a situation which may be troublesome to other
methods.

In the notation of that paper it was shown that if a vector set x
is to be superimposed on X using an orthogonal transformation,
R, with positive determinant, so as best to satisfy

X = Rx, )

then R may be constructed from a four-dimensional vector, p (a
unit quaternion), which is the eigenvector of largest eigenvalue
of a matrix P which, in turn, is constructed from the three-row
rectangular matrices X and x.

If the eigenvalues of P are p, through p4, arranged in descend-
ing order, with associated eigenvectors p; through p,, then, from
equation (23) of (I),

Ein = Eo — 2ps (2)

where

E= Z W(X — Rx).(X — Rx)

Eo= Z WX - x).(X = x)

with weights W, in which x and X are, for the moment, treated
as individual corresponding column vectors.

If we use a prime to denote the fitting, by proper rotation, of
R’x onto —X, the enantiomer of X, then likewise

3)

E = Z WX +R'x).(X +R'x)

4)
Ey= Z WX +x).(X +x)
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Enin = Eg — 2p). (5)

However, negating X or x, but not both, negates P and therefore
all of its eigenvalues, so that

P = —pa. (6)
Equations (3) and (4) give
Eo = (X — x)W(XT —xT)]
= t(XWXT) — 2trxWXT) + tr(xWxT)

E§ = u[(X + x)W(XT +xT)]
= lr(XWXT) + 2r(xWXT) + rxWxT)

)

in which x and X are again rectangular and W is diagonal. There-
fore

Erlnin — Enin = 4"("wa) +2p) + 2p4. (8)

But

Pr+p2+pi+ps=trP =1Q
=M +tMT — 2urL.rM 9)
= —4tr(xWXT)

from equations (17) and (22) of (I). Therefore

Enin = Emin =PI — p2 — p3 + Pa. (10)
Thus, if the right-hand side of (10) is negative it is certain that
x can be superimposed on —X more closely than on X, which
fact may thus be established before transforming any coordi-
nates. Furthermore, the associated rotation matrix, R’, may be
constructed from p, in the same way that R is constructed from
p, using equation (7) of (I). Routines used to find p; normally
provide all eigenvalues anyway.
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